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A Lagrangian in (I + 3)-dimensional space-time which describes the interaction 
of photons, electrons, and phonons is proposed. This is a generalization of 
Rodriguez-Nufiez' model. This Lagrangian is also singular in the sense of Dirac. 
The path-integral quantization of this system is performed with the aid of the Dirac 
formalism for a singular Lagrangian and the method of functional integration. The 
phase-space generating functional of the Green function of this system is deduced. 
The Ward identities in canonical formalism for local symmetries are derived, and 
the Ward identities of proper vertices for this system are obtained. The conserved 
charges at the quantum level are also obtained. The effective Lagrangian in 
configuration space for the present model is derived in the case p = const. Thus, 
the Feynman rule can be deduced immediately. 

1. I N T R O D U C T I O N  

The electron-phonon system (polaron) is basic to the BCS theory of 
superconductivity for metals. This interaction has been expressed as a Hamil- 
tonian (Haken, 1976) and described by using a Lagrangian in (1 + l)- 
dimensional space-time (Rodriguez-Nufiez, 1990). The Lagrangian is singular 
in the sense of Dirac (1964). The canonical quantization by using Dirac 
brackets for this Lagrangian was given by Rodriguez-Nufiez (1990). Symme- 
try Dirac brackets were used to obtain the BCS Hamiltonian. 

However, in that work the electromagnetic field was not included. In 
the present paper, we shall discuss a more general case. A Lagrangian which 
describes photon-electron-phonon interactions in (1 + 3)-dimensional space- 
time is proposed. This is a generalization of Rodriguez-Nufiez' (1990) model. 
This generalized Lagrangian is also singular in the sense of Dirac. We formu- 
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late the path-integral quantization of this system with aid of the Dirac formal- 
ism for a singular Lagrangian and the method of functional integration 
(Faddeev, 1970; Senjanovic, 1976). The local and global canonical symmetry 
properties at the quantum level for a system with singular Lagrangian are 
discussed, and we give a preliminary application to the present model. 

This paper is organized as follows. In Section 2 we propose a Lagrangian 
in (1 + 3)-dimensional space-time which describes photon-electron-phonon 
interactions, and formulate a path-integral quantization for this system. This 
system contains both first-class constraints and second-class constraints in 
the Dirac lormalism. The generating functional of the Green function in phase 
space for this system is deduced. In Section 3 the canonical Ward identities 
for local symmetries are derived, and the Ward identities of proper vertices 
for a system of interacting photons, electrons, and phonons are also derived; 
the advantage of this derivation is that one does not need to carry out explicit 
integration over canonical momenta in the phase-space functional integral. 
In Section 4 the global canonical symmetry properties for the functional 
integral in the canonical formalism are studied. The conserved charges of 
space-time symmetries at the quantum level for a system of interacting 
photons, electrons, and phonons are obtained. In Section 5 the effective 
Lagrangian in configuration space is derived in the case p = const for 
the present model; thus the Feynman rule for this system can be derived 
immediately. Section 6 is devoted to conclusions and a discussion. 

2. THE GENERATING FUNCTIONAL OF THE GREEN 
FUNCTION FOR A SYSTEM OF INTERACTING 
PHOTONS, ELECTRONS, AND PHONONS 

The Lagrangian used to describe the electron-phonon interaction in 
(1 + 1)-dimensional space-time was given by Rodriguez-Nufiez (1990). The 
electromagnetic field was not included. Here we study a more general case; 
the electromagnetic field is considered and studied in the (1 + 3)-dimensional 
space-time for such a system. The phonon, electron, and electromagnetic 
fields are denoted by q(x), r and A,(x) respectively, where x = (t, x). 
The flat space-time metric is "q~v = diag(+ - - - )  (Ix, v = 0, 1, 2, 3). 
Natural units (c = h = 1) are adopted. Throughout this paper the same 
notations as in Rodriguez-Nufiez (1990) will be used, unless otherwise stated. 
The inclusion of the electromagnetic field in the Lagrangian for a system of 
interacting photons, electrons, and phonons can be done by requiring that a ,  

O~ - ieA~; thus, the Lagrangian density for such a system in (1 + 3)- 
dimensional space-time can be generalized as 
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= F ~ ( x ) F ~ ( x )  + ~b*(x) i(19 o - ieAo) + ~m (17 - ieA) 2 *(x) 

l 
+ ~ [p(#(x)) 2 - s(Vq(x)) 2] - V(x, q)**(x)*(x)  (1) 

where F ~ ( x )  is the usual electromagnetic tensor 

F ~ ( x )  = 19~A~(x) - O~A~(x) (2) 

A, (x )  = (Ao(x), A(x)) and V(x, q(x)) is a interaction potential of electlons 
and phonons. In the Rodriguez-Nufiez (I 990) model V(x, q) = mgq. For an 
inhomogeneous material, the quantities p and s may be considered as functions 
of the space points and field variable q(x). 

The Lagrangian density (1) is singular in the sense of  Dirac. First we 
determine the constraints of  this system in phase space. The canonical 
momenta associated with the fields , ,  q, Ar are 

19Y 19Y 
-tr, - 19(0 - i0*, 'rr** - 19~ - 0 

- p#,  w ~ . . . .  FO. 
"~q- 19# 19Ap. (3) 

respectively. The canonical Hamiltonian density is 

~ c  = ']T~j+ "[- TI'~*+ ~g "4- T/'q# -]'- 'ITP'AIx --  

1 xr~ - A~ + 1 = ~ ~ FikFik -- e**AoO 

1 1 1 
- 0* [ (7  - ieA)2],  + ~pp "rrZq + ~ (Vq) 2 + V~** (4) 

Then we have three primary constraints 

~b~ = ~r, - i~b* ~ 0 (5) 

~b ~ = -tr,, ~ 0 (6) 

+3 o = "rr ~ ~- 0 (7) 

The total Hamiltonian is 

Hr = f d 3 x[~,c + hlqb ~ + h2dp ~ + h3~b ~ (8) 

where hi(X ) (i = I ,  2,  3) are Lagrange multipliers. The stationarity of  the 
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primary constraint d~ ~ {~b ~ Hr} ~ 0, leads to the equation for determining 
the Lagrange multiplier h2, 

1 
iK2 ~-" e~*Ao  + ~ m  [V2tl/* -}- ieVt~*.  A + ieV-(~*A)  - e2A2t~ *] (9) 

- V t ~ *  

The stationarity of  the primary constraint qb ~ {d~~ Hr}  ~- 0, yields 

l [V2t ~ _ i e V .  (OA) - i e A ' V O  - e2A2~] (10) iM -~ - e ~ A o -  2,--~ 

- v q ,  

The stationarity of  the primary constraint qb ~ {qb ~ Hr} ~- 0, leads to the 
fol lowing secondary constraint: 

r --. OiT~ i _}_ ed~*d~ ~- 0 (11) 

The stationarity of  the secondary constraint qb I does not produce any new 
constraints. 

Let  us denote At = "tr ~ ~- 0, 0t = dp ~ ~- 0, 02 = d~ ~ ~- 0; one finds a 
linear combinat ion of  the constraints qb ~ qb ~ and qb 1 

A2 = qb I - ie(d~dp ~ - d~*dp ~ 

= 3ixri - ie(t~'tr, - O*'rr**) ~ 0 (12) 

It is easy to check that 

{AI, A2} ~ 0, {A 1, 01} ~ 0, {A2, 02} ~ 0 (13) 

{01, A2} = ie01~(x - y) ~- 0 (14) 

{02, A2} = ie02~(x - y) ~- 0 (15) 

{01, 02} = i~(x - y) (16) 

Hence, the constraints AI and A2 are first class, while the constraints 0m and 
02 are second class. 

According to path-integral quantization, for each first-class constraint, 
one must choose a gauge condition. Consider the Coulomb gauge 

~'~2 = OiAi  ~-" 0 (17) 

By the stationarity of f~2, 001"~2 ~ 0, one has another gauge constraint, 

1"~1 = Oi'rti + VZAo ~- 0 (18) 

The phase-space generating functional of  the Green function for a singu- 
lax Lagrangian can be written as (Senjanovic, 1976) 
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f 
Z[J] = [ ~qb '~ ~'rr~ I-[ 8(0/)8(Ak)8(12t) detl {At, 12t}l 

3 i,k,I 

• (detl{Oi, Oj}l)ll2exp(i f d4x('rr,~+r -'~c + Ja+'~)} (19) 

Using the integral properties of the Grassmann variables Ck(x) and Ct(x), we 
can write the expression (19) as (Li, 1995) 

Z[J] = f ~'~'rr,~h,,,~-Ck~Ctexp{il~. + i f d4xJ,~dr '} (20) 

where 

I~= f d4x~pff= f d4x(~s + Ys + ~s (21) 

,.~P = ,rr~,qb ~' - ~ (22) 

2s = kjOj + )tkAk + )ttlIt (23) 

= I d4y [Ck(x) { Ak(x), fit(y) } Ct(y) 5egh 

+ �89 Oj(y)}Cj(y)] (24) 

km = (hi ,  h t, ht) are multiplier fields. Here we did not introduce the exterior 
sources for canonical momenta "rr,,(x). For a system of  interacting photons, 
electrons, and phonons the ~b '~ = (A~, ~, ~*, q) in expression (20), and "rr~ 
= (,rrr "rr,, "rr**, "rrq) are canonical momenta associated with qb". It is easy to 
check that the factors detl {At, lIl}l and detl {0i, 0j}l for this system are 
independent of the field variables; thus, one can omit these factors from the 
generating functional (19), and the expression (19) can be written as 

I Z[J, T, U, V] ~dO '~ ~'rr~ ~ h  ~ ~to 

•163 J,~*~+ T k h t - b  Ultol-t-V/ld,  i)} (25) 

where 

~Peff = }~'P "-k )tk A k -t- toll-~l -t- ~LiO i (26) 

5eP = 'rr,+ + "rr**d/* + %0  + "rr~Ar - ~c  (27) 

hk(x), tot(x), and lxi(x) are multiplier fields connected with the constraints Ak, 
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f~t, and 0i, respectively. In expression (25) we introduced the exterior sources 
J~ = (J~, ~*, 6, "q), T~, Ut, and V/with respect to the field ~b ~' = (A ", ~, t~*, 
q), Xk, tot, and ~;, respectively. 

For the case where the quantity 13 depends on the coordinate and field 
variable q, even when the path integral (25) can be carried out by explicit 
integration over the canonical momenta ~rq, the effective Lagrangian is singu- 
lar with a ~-function (Lee and Yang, 1962). In this case it is more useful to 
investigate the transformation property of the system under the canonical 
variables. This we do in the following section. 

3. CANONICAL WARD IDENTITIES FOR A SYSTEM WITH 
SINGULAR LAGRANGIAN 

The identities relating the Green function in QED were obtained by 
Ward (1950) and Takahashi (1957); the generalization of these identities 
was given by Slavnov (1972) and Taylor (1971). Ward identities and their 
generalization play an important role in modem field theories. Ward identities 
have been generalized to supersymmetry (Joglekar, 1991) and superstrings 
(Danilov, 1991) and other problems. The derivation for Ward identities in the 
functional integration method is usually discussed by using the configuration- 
space generating functional (Suura and Young, 1973; Lhallabi, 1989). As is 
well known, phase-space path integrals are more basic than configuration- 
space path integrals; the latter provide a Hamiltonian quadratic in canonical 
momenta, whereas the former apply to arbitrary Hamiltonians (Mizrahi, 
1978). Thus, the phase-space form of the path integral is a necessary precursor 
to the configuration form. In certain integrable cases while the "mass" depends 
on "coordinates" (Lee and Yang, 1962; Gerstein et al., 1971) or on "coordi- 
nates" and momenta (Duet  al., 1980), the phase-space generating functional 
can be simplified by carrying out explicit integration over momenta, and the 
effective Lagrangians in configuration space are singular with a ~-function. 
For a constrained Hamiltonian system with complex constraints, it is very 
difficult or even impossible to carry out the integration over momenta. In 
these cases the Ward identities cannot be derived via a generating functional 
with a Lagrangian (or effective Lagrangian) in configuration space as in the 
traditional treatment. Based on the phase-space generating functional, it is 
more useful to investigate its transformation properties under the transforma- 
tion of canonical variables. This problem was developed (Li, 1995) in previous 
work. Here a slight modification of our previous discussion is presented and 
some applications to a system of interacting photons, electrons, and phonons 
are given. 
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Let us consider an infinitesimal transformation in phase space 

= + = + 

"rr '~ ( x )  = "rr~,(x) + ~'rr,~(x) = 'rr,~(x) + T~,,,~."(x) (28) 

where e*(x) (cr = 1, 2 . . . . .  r) are infinitesimal arbitrary functions whose 
values and their derivatives on the boundary of the space-time domain vanish, 
and S~ and T~,,, are linear differential operators. Under the transformation 
(28), the generating functional (20) is invariant. Here we do not introduce 
exterior sources for canonical momenta (Li, 1995). The variation of the 
effective canonical action (21) under the transformation (28) is given by 
(Li, 1993) 

Let it be supposed that the Jacobian of the transformation (28) is equal to unity. 
From the boundary conditions of (*(x) and the invariance of the generating 
functional (20) under the transformation (28), this leads to 8Z lar  = O. 

Thus we obtain the following canonical Ward identities: 

[.~.(~l~ff/~b ~) + T',~,.(~l~d~Tr,~) + S'~J~]~-,~e/o$ ~ Z[J ]  = 0 
, et...~( i l i )~ lS j  a 

(30) 

where ~ and T,,,, are adjoint operators with respect to S~ and T,~,, respectively 
(Li, 1987). 

Let us now construct the gauge transformation for a system with Lagran- 
gian (1). Dirac (1964) in his work on the generalized canonical formalism 
conjectured that all first-class constraints are independent generators of the 
gauge transformation. In spite of the lack of a proof of this conjecture we 
do not know of any physically important system for which Dirac's conjecture 
leads to the wrong result. I have shown (Li, 1991) that a system has both 
first-class and s~cond-class constraints if the series of secondary first-class 
constraints derived from primary first-class constraints is completely sepa- 
rated from the series of second-class ones; the generator of gauge transforma- 
tion can be constructed by using all first-class constraints. For a system with 
Lagrangian (1) belonging to this category, the first-class constraints are (7) 
and (12), and the second-class constraints are (5) and (6). The gauge generator 
for this system can be written as (Li, 1991) 

G = ~ d 3 x  {~(x)'rr0(x) 
d 

- e(x)[ai 'rr i (x)  - i e ( O ( x ) ' r r , ( x )  - ~*(x)'rr,.(x))]} (31) 
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This generator produces the following transformation: 
r 

8Ao.(x) = {A~(x), G} = 3~e(x) 

8axe(x) = {rr~(x), G} = 0 

8O(x) = {O(x), G} = iee(x)dd(x) 

8"n'~,(x) = {'rr,(x), G } = -iee(x)~,(x) 

(32) 

Under the transformation (32) the expression (27) is invariant. The change 
of (26) under the transformation (32) is given by 

g~Per = K2A2(~*, "rr,.)e(x) + tolV2e(x) + to2V2e(x) (33) 

where A2 is a function of ~* and "rr**. The Jacobian of the transformation 
(32) is equal to unity. The generating functional (25) is invariant under the 
transformation (32); this yields the following Ward identities: 

f ~)(J)a ~),Tl.ot ~)~. ~1,  ~)to (h2A 2 - V2(j)l q- V2t02 - q-- - q-- 3~J ~ ~*~ "qq) 

•  Tkkk+ Uttol + ~l)i) ] = 0  (34) 

or 

~ 
+ V 2 - - -  O.J ~ + 6" 

~U2 
~ ,  - ~ ~ + 

• Z[J, T, U, V] = 0  (35) 

Let Z[J,~, T, U, V] = exp(iW[J~, T, U, V]) and use the definition of the 
generating functional of proper vertices F[d0% h, to, ~] which is given by 
performing a functional Legendre transformation on W[J., T, U, V], 

F[~b ~, h, to, ~] = VC[J,~, T, U, V] - I d4x (J~dP~ + Tkhk + Uttot (36) 
, /  

+ E~i) 

and 

~W ~F 
- -  - ~ ( x ) ,  - J ~ ( x )  
~J~(x) ~ ' ( x )  

~W ~F 
= hk(X), -- -- Tk(x) (37) 

8Tk 8hk(x) 
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~W 

~Ul(X) 

g W  

~V~(x) 

Then (35) becomes 

~F 
- tot(x), - -  - Ut(x) 

8to/(x) 

8F 
- -  ~ L i ( X )  ' - -  - -  _ _  V i ( x )  

8~i(x) 

h2A2 - Vz~b, + V2to2 + r162 

, 6 F  ~ F  
- ,  (x) + q(x) - o 

~ F  
+ +(x) ~+(x) 

(38) 

We functionally differentiate (38) with respect to ~(x2) and O*(x3) and 
set all fields (including multiplier fields) equal to zero, A~ = ~ = t~* = q 
= hk = tot = ~i = O; we obtain 

~3F[O] 

O~xl ~qj*(x3)g~(x2)gA~.(Xl) 

82F[0] 
= ~ ( X  1 - -  X2 ) 

g~(xt)g~*(x3) 

~2F[0] 
- g(x~ - x3)  ( 3 9 )  

On performing the Fourier transformation of (39), we find 

qr162 q, p + q) = S ~ ( p  + q) - Srel(q) (40) 

where Fr is a proper vertex for photons and electrons and Sr is a propagator 
of electrons. We functionally differentiate (38) with respect to q(x,.) and q(x3) 
and set all fields equal to zero; we get 

g3F[0] 
O~xl ~3q(x3)gq(x2)SA~(xl) 

82F[01 
= g ( x ,  - x9 

gq(xOgq(x3) 

82F[01 
+ g(xl - x3) (41) 

?3q(xl)~3q(xz) 

Similarly, differentiating (38) many times with respect to field variables and 
setting all fields equal to zero, one can obtain various Ward identities for 
proper vertices. 
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This formulation for deriving Ward identities of  proper vertices has a 
significant advantage is that one does not need to carry out explicit integration 
over canonical momenta as one usually does. 

4. G L O B A L  C A N O N I C A L  S Y M M E T R Y  AND C O N S E R V E D  
C H A N G E  AT T H E  Q U A N T U M  L E V E L  

The connections between global symmetries and conservation laws are 
usually referred to as Noether theorems in classical theory. Noether theorems 
are formulated in terms of  Lagrange variables in configuration space. The 
canonical symmetries of  a system in phase space for classical theory are 
investigated in Li (1991). We further study here the connection between 
global canonical symmetries and conserved charges at the quantum level 
and give some applications to a system of interacting photons, electrons, 
and phonons. 

For the sake of simplicity, we denote qb = (qb ~, hm, C, C), "rr = (7,~), 
and J = (J~,) in expression (20), which thus can be written as 

Z[J]=I~b~7exp[ild4x(.~.P~+J~) ] (42) 

Consider an infinitesimal global transformation in extended phase space 

I x ~' = x~' + Axe' = x ~ + e,;r~'~(x, +, ~)  

+ ' (x ' )  = ~b(x) + A+(x) = +(x) + %~'~(x, dp, "rr) (43) 

~ ' ( x ' )  = -a'(x) + AT(X) = 7(x) + %~l~(x, +, 7)  

where e,~ (or = 1, 2 . . . . .  r) are infinitesimal arbitrary parameters, and ,r~,~, 
~", and "q'~ are some functions of x, qb(x), and 7(x). We suppose that the 
effective canonical action (21) is invariant under the transformation (43). 
Now let us further consider the following local transformation connected 
with the transformation (43): 

I x~' = x~ + Ax~ = x~ + ~,,(x),r~(x, +, ~r) 

+ ' ( x ' )  = 6(x) + V+(x) = +(x) + ~,~(xK~(x, 6, 7) (44) 
~ ' ( x ' )  = 7(x) + AT(X) = 7(x) + %(x)'q"(x, 6, 7) 

where %(x) (tr = 1, 2 . . . . .  r) are infinitesimal arbitrary functions whose 
values and derivatives vanish on the boundary of  the space-time domain. 
Under the transformation (44), the variation of  the effective canonical action 
(21) is given by (Li, 1993) 
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I . fSI~rf ,~ 8lPff ~IP~ff = d4x e~r~x)~-~ (~ - dp,~'r ~cr) + ~ (.qCr _ dp, .r~ur) 

+ a~[(-rr$ - ~'~rr)a -~'~] + D[,n'((" - ,rr.,,rr 

+ f d4x {(~b - ~eff)'r~t"Or + 'rr(~ ~r -- d#.~'r~")D~.~(x) } (45) 

where ~ f f  is an effective Hamiltonian density connected with ~ r f .  Owing 
to the assumption that the effective canonical action (21) is invariant under 
the transformation (43), the first integral in (45) is equal to zero. According 
to the boundary conditions of e,,(x), expression (45) can be written as 

8l~ff = - I  d4x e~(x){Or - ~rf) ' r  "~] + D[rr(~" (46) 

- +.;r~")] } 

Let it be supposed that the Jacobian of  the transformation (44) is equal to 
unity; the invariance of  the generating functional (42) under the transformation 
(44) implies 8ZlS~,~(x) = 0. Substituting (44) and (46) into (42) and function- 
ally differentiating with respect to e,~(x), one gets 

f ~ +  ~-rr {a~[(,rr+ - + - - ~.rf).r~] D[.tr(~ '~ M ,~ } 

X e x p [ i f d 4 x ( ~ . P f r + J d ~ ) ]  = 0  (47) 

where 

M"  = J(~" - d/).r ~ )  (48) 

Functionally differentiating (47) with respect to J(x) n times, one obtains 

f ~d# ~ r  ({a~[(~qb - ~eff)'r ~'~ + D['tr(~ '~ - ~,~'r~~ - M '~ } 

• d~(x,) ""  d~(x.) + i ~ d~(x,) ""  d~(xj-l)+(xj+t) "'" d~(x.)N'ra(x - xj)) 

•  

where 

J 

+ y + ) |  = o 

l 

J 
(49) 

N '~ = ~'~ - ~b,~,'r r (50) 
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Let J = 0 in (49); one has 

(01 T* { 3~[(~rqb - ~eff)'r ~'] + O[Tr(l~ ~' - +.tire")] } qb(xl) "'" +(x,,) I 0) 

= - i  ~ (01T*[dO(x0 "'" r  " ' "  qb(x,,)N"] 10)~(x - x j )  (51) 
J 

where the symbol T* stands for the covariantized T-product (Suura and Young, 
1973). Fixing t and letting 

t l ,  t2 ,  � 9  � 9  t,,, ~ +oc, t , , ,+l ,  t , ,+2 . . . . .  tn ---> ~ 

and using the reduction formula (Young, 1987), we can write expression 
(51) as 

(out, m l { 3~[(-rr~b - ~efr)'r Ix~r] + D[~r(t~" -- d~.dr~") ] } In (52) 
- m ,  i n )  = 0 

Since m and n are arbitrary, this implies 

0r - ~fe) 'r  ~''1 + D['rr({" - dO.r = 0 (53) 

We now take a cylinder in four-dimensional space, the axis of which is 
directed along the t axis and whose top and bottom V~ and I,'2 are two likespace 
hypersuffaces t = t~ and t = t2, respectively. If we assume that the field 
approaches zero rapidly enough, then taking the integral (53) on this cylinder, 
from Gauss' theorem in the four-dimensional space, we can neglect the 
contribution to the boundary term of the infinite cylinder connecting Vt and 
V2. Thus we obtain the conserved charges at the quantum level 

= I d3x [Tr(~Cr - -  qb'k'l'k~r) - -  ~ e f f T 0 ~  (O" = 1, 2 . . . . .  r) (54) a , '  

Consequently, we obtain the following results: If the effective canonical 
action (21) is invariant under the global transformation (43) and the Jacobian 
of the corresponding transformation (44) is equal to unity, then there are some 
conserved charges (54) for such a system. These results hold for anomaly-free 
theories. These conserved charges at the quantum level correspond to the 
classical conservation laws via a canonical Noether theorem (Li, 1993). In 
general the conserved charges differ from the classical ones arising from 
canonical symmetries (Li, 1993). 

The advantage of the above derivation for quantal conserved charges is 
that we do not need to carry out explicit integration over the canonical 
momenta in the phase-space generating functional. In the general case it is 
not possible to carry out this integration. 

For a system with Lagrangian (1) whose effective canonical action is 
invariant under the spatial translation, the Jacobian of this transformation is 
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equal to unity, and in this case 'r ~ = 0. From expression (54) we obtain the 
conserved charge (conservation of momentum) 

P = - f  d3x ('rrCVA ~ + 'rr,Vt~ + "ffqVq) (55) 

With the invariance of time translation, 'r;" = 0 (i = 1, 2, 3), from expression 
(54) we obtain the conservation of energy on the constrained hypersurface 
(including the gauge constraints) 

f 1 1 E = d3x "if2 i + ~ FikFik -- A~ + eO*O) - ~mm ~*[(V - ieA)2]O 

1 2 + 1  } 
+ 2p -rrq ~ s(Vq) z + V**~ (56) 

Under the transformation of spatial rotation, the Jacobians of the transforma- 
tion of the vector field A~ and one-component fields t~(x), ~*(x), and q(x) 
are equal to unity; in this case "r ~ = 0. From (54) and the transformation 
properties of the fields (Schweber, 1961) we obtain the conservation of 
angular momentum, 

Mj, = d3x "rr ~ xk O---~j - xj Ox, ] + "rr~(EJk)r 

where 

( )  + ~* ~* axj - XJ Tx~ + \ oxj 
(57) 

(•p,,),." = gpv.g,,,, - gp~'g,,,. (58) 

The effective cafionical action is invariant under the following global 
gauge transformation: 

d/(x) = e-ie~t~(x). 'rr~(x) = eie~'lr,(x) (59) 

From (54) we obtain the conservation of charge 

Q = e f d3x dd*(x)t~(x) (60) 

It is worthwhile to point out that the above conserved charges (55)-(57) and 
(60) at the quantum level coincide with classical ones deriving from the 
canonical Noether theorem (Li, 1993). 
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5. THE EFFECTIVE LAGRANGIAN IN CONFIGURATION 
SPACE 

Now we construct the configuration-space generating functional for a 
system with Lagrangian (1). For the case p = const in (1), the phase-space 
path integral (25) can be carried out by explicit integration over momenta 
'rr~ without a ~-function (Lee and Yang, 1962). We rewrite (25) as follows: 

z[J~, 6", 6, "q] 

= f ~A~ ~'rr ~ ~ ~Tq 1, ~ *  ~'rr,l,. ~q ~'trq 

x 1-[ 8(0,)8(Ak)8(lqt)'exp[i ( d4x ('rr~ "rr,(~+ 'no.+* + "n'qq 
i.k.I L 3 

- '~c + J~A~ + 6*t~ + d/*6 + a'lq)] (61) 

We integrate over A ~ "rr0, -tr,, and "rr** in expression (61). Then we represent 
~[Oi'rri - ie(@rrr + ~*-rr**)] in the form of a functional integral 

~ [ O i ' r f  i - -  ie(@rr, + O*w**)] 

=exp(-ild4xAo[Oi'rri-ie(@rr~,+~*'tr~,,)]~Ao}~ (62) 

The remain integral over momenta is of Gaussian type and can be easily 
calculated. As a result, we obtain the expression for Z in the form of a 
functional integral in configuration space: 

Z[ J~', ~*, 6, "q] = f ~bAv. ~ *  ~bq ~( OiAi) 

Xexp[i ld4x(~+J~-A, .+ 6**+**6+'qq)] (63) 

or 

Z[ Jr 6*, 6, rl] = ~ ~ A ,  ~ ~b~* ~q  
J 

where 
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1 
~ = ~ - 2~o  (OiAi)2 (65) 

is given by equation (1), and a0 is a gauge parameter. The effective 
Lagrangian (65) differs from the original one because of the existence of the 
constraints for this system. 

Using the traditional trick of the functional integration method (Nash, 
1978), one can also derive the Ward identities (39) and (41) from the configu- 
ration-space generating functional (64). 

As is well known, in the tree diagram approximation the generating 
functional for proper vertices F is equal to the effective action in configura- 
tion space 

f f [  , ] r : d4x "~eff - -  d4x ~'~ -- 2e~----'oo (OiAi)2 (66) 

From expression (66) the Feynman rule for a system with Lagrangian (1) 
can be derived immediately. 

6. CONCLUSIONS AND DISCUSSION 

A Lagrangian in (1 + 3)-dimensional space-time which describes the 
photon-electron-phonon interaction is proposed which is a generalization 
of Rodriguez-Nufiez' (1990) model. The electromagnetic field is included in 
the present model. The path-integral quantization of this system is formulated 
with the aid of the Dirac formalism for a singular Lagrangian and the method 
of functional integration. The phase-space generating functional of the Green 
function is deduced. The canonical Ward identities for a system with singular 
Lagrangian are derived. From these identities, relationships among the Green 
functions for the present model can be obtained. The conserved charges 
arising from the global canonical symmetries for a system with singular 
Lagrangian are also derived at the quantum level. In general, the connection 
between the canonical symmetries and conservations laws in classical theory 
is no longer preserved in quantum theory. But in the present model the 
conserved charges arising from the space-time and internal symmetries at 
the quantum level coincide with the classical ones. The effective Lagrangian 
in configuration space for this model have been deduced in the case p = 
const. Thus, the Feynman rule for this system can be derived immediately. 

Numerous recent investigations of (1 + 2)-dimensional gauge theories 
with Chem-Simons terms in the Lagrangian have revealed the occurrence 
of fractional spin and statistics (Banerjee, 1993, 1994; Kim et  al . ,  1994). 
They have attracted much attention due to their possible relevance to con- 
densed matter phenomena, especially to the fractional quantum Hall effect 
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and high-T~ superconductivity. In those papers the angular momentum was 
deduced by using a classical Noether theorem, and the results connected with 
the fractional spin were analyzed. However, whether those results are valid 
at the quantum level can be investigated by using our formalism, and work 
along these lines is in progress. 
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